367.

Problem 31.26 (RHK)

A capacitor has square plates, each of side a, making an angle θ with each other as shown in the figure. We have to show that for small θ the capacitance is given by

$$
C=\frac{\varepsilon_{0} a^{2}}{d}\left(1-\frac{a \theta}{2 d}\right) .
$$

Solution:

A capacitor has square plates, each of side a, making an angle θ with each other as shown in the figure. For calculating the capacitance of this capacitor, we will assume that it is a parallel combination of stripcapacitances along the length a each of area $A=a d x$.

The separation of the strip-capacitance at length x from the end as shown in the figure will be $d(x)=d+x \theta$.

The capacitance of the strip-capacitor at length x will be $c(x)=\frac{\varepsilon_{0} a d x}{d(x)}=\frac{\varepsilon_{0} a d x}{d+x \theta}$.

Therefore, the capacitance of the capacitor shown in the figure will be

$$
C=\int_{0}^{a} c(x)=\varepsilon_{0} a \int_{0}^{a} \frac{d x}{d+x \theta}=\frac{\varepsilon_{0} a}{d} \int_{0}^{a} d x\left(1+\frac{x \theta}{d}\right)^{-1}
$$

In the approximation

$$
\frac{x \theta}{d}=1,
$$

integral reduces to

$$
C=\frac{\varepsilon_{0} a}{d} \int_{0}^{a} d x\left(1-\frac{x \theta}{d}\right)=\varepsilon_{0} a^{2}\left(1-\frac{a \theta}{2 d}\right) .
$$

