365.

Problem 31.23 (RHK)

In the figure two capacitors $C_{1}=1.16 \mu \mathrm{~F}$ and $C_{2}=3.22 \mu \mathrm{~F}$ have been shown. Each is charged to a potential $V=96.6 \mathrm{~V}$ but with opposite polarity, so that points a and c are on the side of the respective positive plates of C_{1} and C_{2}, and points b and d are on the side of the respective negative plates. Switches S_{1} and S_{2} are now closed. We have to find (a) the potential difference between points e and f; (b) the charge on C_{1} and (c) the charge on C_{2}.

Solution:

(a)

In the circuit shown in the figure the capacitors
$C_{1}=1.16 \mu \mathrm{~F}$ and $C_{2}=3.22 \mu \mathrm{~F}$ each have been charged to potential $V=96.6 \mathrm{~V}$ and the switches S_{1} and S_{2} are open.

Therefore, the magnitude of the charge on C_{1} will be $q_{1}=1.16 \times 10^{-6} \times 96.6 \mathrm{C}=112.0 \times 10^{-6} \mathrm{C}=112.0 \mu \mathrm{C}$., and the magnitude of the charge on C_{2} will be $q_{2}=3.22 \times 10^{-6} \times 96.6 \mathrm{C}=311.0 \times 10^{-6} \mathrm{C}=311.0 \mu \mathrm{C}$. After the switches S_{1} and S_{2} are closed an amount of charge $q \mu \mathrm{C}$ will flow from C_{2} to C_{1} till both the capacitors have the same potential across their plates.

That is the potential difference between points e and f will be the potential difference across each of the two capacitors.

This implies that
$\frac{(311.0-q)}{3.22 \times 10^{-6}}=\frac{(q-112.0)}{1.16 \times 10^{-6}}$.
Solving this equation, we find
$q=164.75 \mu \mathrm{C}$.
We calculate the potential difference across the capacitor C_{1}. It will also be equal to the potential difference
between e and f after the two switches have been closed.
We have
$V^{\prime}=\frac{(164.7-112.0)}{1.16} \mathrm{~V}=45.4 \mathrm{~V}$.
(b)

Charge on C_{1} will be
$q_{1}^{\prime}=(164.7-112.0) \mu \mathrm{C}=52.7 \mu \mathrm{C}$,
(c)

And charge on C_{2} will be
$q_{2}{ }^{\prime}=(311-164.7) \mu \mathrm{C}=146.3 \mu \mathrm{C}$.

