362.

Problem 31.17 (RHK)

Three capacitors are connected in parallel. Each has plate area A and plate spacing d. We have to work out (a) the spacing of a single capacitor of plate area A if its capacitance equals that of the parallel combination. We will also work out (b) the spacing of a single capacitor of plate area A if its capacitance equals that of the series combination.

Solution:

(a)

Capacitance of a parallel plate capacitor of plate area A and plate spacing d is
$C=\frac{\varepsilon_{0} A}{d}$.
When the three identical capacitors are connected in parallel the equivalent capacitance of the combination will be
$C_{p}=3 C=3 \varepsilon_{0} \frac{A}{d}$.

Therefore, the spacing of a single capacitor of plate area A having the capacitance C_{p} will have to be $d / 3$. (b)

When the three identical capacitors are connected in series, the equivalent capacitance of the combination will be

$$
\frac{1}{C_{s}}=\frac{3}{C}, \text { or } C_{s}=\frac{C}{3} .
$$

Therefore, the spacing of a single capacitor of plate area A having the capacitance C_{s} will be $3 d$.

