360.

Problem 30.64 (RHK)

We have to estimate (a) the charge required to raise an isolated metallic sphere of radius $1.0-\mathrm{m}$ radius to a potential of 1.0 MV. (b) We have to estimate the charge required to raise an isolated metallic sphere of radius $1.0-\mathrm{cm}$ to the same amount of potential, 1.0 MV. (c) We have to answer why in an electrostatic accelerator a large metal sphere is deployed when the same potential can be achieved using a smaller charge with a small sphere.

Solution:

Charge required on the surface of a metal sphere of radius R for it to be at potential V is given by the relation

$$
Q=4 \pi \varepsilon_{0} R V=\frac{R V}{8.99 \times 10^{9}} \mathrm{C} .
$$

(a)

For a metal sphere of radius of 1.0 m to be at a potential of $1.0 \times 10^{6} \mathrm{~V}$ amount of charge required will be
$Q_{1}=\frac{10^{6}}{8.99 \times 10^{9}} \mathrm{C}=111 \mu \mathrm{C}$.
(b)

For a metal sphere of radius of 1.0 cm to be at a potential of $1.0 \times 10^{6} \mathrm{~V}$ amount of charge required will be
$Q_{0.01}=1.11 \mu \mathrm{C}$.
(c)

Electric field near a charged metal surface is proportional to its surface charge density.

The surface charge density for a $1.0-\mathrm{m}$ metal sphere to be at 1 MV potential, will be $\sigma_{1}=\frac{111}{4 \pi} \mu \mathrm{C} \mathrm{m}^{-2}=8.83 \mu \mathrm{C} \mathrm{m}^{-2}$.

And the surface charge density for a $1.0-\mathrm{cm}$ metal sphere to be at 1 MV potential, will be $\sigma_{0.01}=8.83 \times 10^{2} \mu \mathrm{C} \mathrm{m}^{-2}$.

Therefore, in order to have not too large electric field near the surface of charged conductor, it is preferred to deploy in electrostatic accelerators a metal sphere of a large radius.

