359.

Problem 30.63 (RHK)

A charged metal sphere of radius 16.2 cm has a net charge of 31.5 nC . (a) We have to find the electric potential at the sphere's surface. (b) We have to find the distance from the surface of the sphere where the potential has decreased by 550 V .

Solution:

Radius of the metal sphere $R=16.2 \mathrm{~cm}=16.2 \times 10^{-2} \mathrm{~m}$.
Charge on the metal sphere $q=31.5 \mathrm{nC}=31.5 \times 10^{-9} \mathrm{C}$.
Potential due to the charge on the sphere
$V(r)=\frac{q}{4 \pi \varepsilon_{0} r}=\frac{8.99 \times 10^{9} \times 31.5 \times 10^{-9}}{r} \mathrm{~V}=\frac{283.18}{r} \mathrm{~V}$, for $\mathrm{r} \geq \mathrm{R}$.
Therefore, potential at the sphere's surface will be $V(R)=\frac{283.18}{16.2 \times 10^{-2}} \mathrm{~V}=1748 \mathrm{~V}$.

We will next find r at which potential

$$
V(r)=(1748-550) \mathrm{V}=1198 \mathrm{~V} .
$$

$$
r=\frac{283.18}{1198} \mathrm{~m}=23.64 \mathrm{~cm} .
$$

This is at a distance of $(23.64-16.2) \mathrm{cm}=7.4 \mathrm{~cm}$.

