354.

Problem 30.53 (RHK)

We consider two widely separated conducting spheres, 1 and 2, the second having twice the diameter of the first. The smaller sphere initially has a positive charge q and the larger one is initially uncharged. The spheres are connected with a long thin wire. (a) We have to answer how the final potentials V_{1} and V_{2} are related. (b) We have to find the final charges q_{1} and q_{2} on the spheres in terms of q.

Solution:

It is given that the conducting sphere, 1 , has initially charge q . The conducting sphere, 2 , is initially uncharged. Let R be the radius of the sphere 1 . The radius of the sphere 2 is $2 R$.

After the conducting spheres have been connected with a long thin wire, there will be transfer of charge from 1 to 2 till the two become equipotential. Let the distributed charge on the conducting spheres when the two are equipotential be q_{1} and q_{2}. We have the condition

$$
\frac{q_{1}}{4 \pi \varepsilon_{0} R}=\frac{\left(q-q_{1}\right)}{8 \pi \varepsilon_{0} R}
$$

Therefore,

$$
q_{1}=\frac{q}{3}, \text { and } q_{2}=\frac{2 q}{3} .
$$

