353.

Problem 30.51 (RHK)

On a thin rod of length L lying on x axis with one end at the origin $(x=0)$, as shown in the figure, there is distributed a charge per unit length given by $\lambda=k x$, where k is a constant. (a) Taking the electrostatic potential at infinity to be zero, we have to find V at point P on the y axis. (b) We have to determine the vertical component, E_{y}, of the electric field at P from the result of part (a) and also by direct calculation. (c) We have to answer why we cannot find E_{x}, the horizontal component of the electric field at P using the result of part (a). (d) We have to find the distance from the rod along the y axis where the potential is equal to one-half of its value at the left end of the rod.

Solution:

(a)

Potential at P due to the charge on the rod can be
calculated by integrating contribution from infinitesimal element of length $d x$,
$\frac{\lambda d x}{4 \pi \varepsilon_{0}\left(x^{2}+y^{2}\right)^{1 / 2}}$. This definition of the potential ensures
that the potential at ∞ is zero.
$V(0, y)=\frac{1}{4 \pi \varepsilon_{0}} \int_{0}^{L} \frac{\lambda d x}{\left(x^{2}+y^{2}\right)^{1 / 2}}=\frac{1}{4 \pi \varepsilon_{0}} \int_{0}^{L} \frac{k x d x}{\left(x^{2}+y^{2}\right)^{1 / 2}}$.
For performing the integration, we make the substitution $x^{2}+y^{2}=\xi$,
$2 x d x=d \xi$.
Therefore,

$$
\begin{aligned}
V(0, y)=\frac{1}{4 \pi \varepsilon_{0}} \int_{0}^{L} \frac{k x d x}{\left(x^{2}+y^{2}\right)^{1 / 2}} & =\frac{1}{4 \pi \varepsilon_{0}} \int_{y^{2}}^{L^{2}+y^{2}} \frac{k d \xi}{2 \xi^{1 / 2}} \\
& =\frac{1}{4 \pi \varepsilon_{0}} \frac{k}{2}\left[\frac{\xi^{1 / 2}}{1 / 2}\right]_{y^{2}}^{L^{2}+y^{2}} \\
& =\frac{k}{4 \pi \varepsilon_{0}}\left(\left(L^{2}+y^{2}\right)^{1 / 2}-y\right)
\end{aligned}
$$

The y-component of the electric field at P can be obtained by differentiating $V(0, y)$ with respect to y . that is
$E_{y}=-\frac{d V(0, y)}{d y}=\frac{k}{4 \pi \varepsilon_{0}}\left(1-\frac{y}{\left(L^{2}+y^{2}\right)^{1 / 2}}\right)$.
(b)

We will next calculate E_{y} directly

$$
\begin{aligned}
E_{y}(0, y) & =\frac{1}{4 \pi \varepsilon_{0}} \int_{0}^{L} \frac{k x d x}{\left(x^{2}+y^{2}\right)} \times \frac{y}{\left(x^{2}+y^{2}\right)^{1 / 2}} \\
& =\frac{k y}{4 \pi \varepsilon_{0}} \int_{0}^{L} \frac{x d x}{\left(x^{2}+y^{2}\right)^{3 / 2}}
\end{aligned}
$$

For performing the integration, we once again make the substitution
$x^{2}+y^{2}=\xi$,
$2 x d x=d \xi$.
We get
$E_{y}(0, y)=\frac{k y}{4 \pi \varepsilon_{0}} \int_{y^{2}}^{L^{2}+y^{2}} \frac{d \xi}{2 \xi^{3 / 2}}$

$$
\begin{aligned}
=\frac{k y}{4 \pi \varepsilon_{0}} \times \frac{1}{2} \times \frac{1}{-1 / 2}\left|\frac{1}{\xi^{1 / 2}}\right|_{y^{2}}^{L^{2}+y^{2}} & =-\frac{k y}{4 \pi \varepsilon_{0}}\left(\frac{1}{\left(L^{2}+y^{2}\right)^{1 / 2}}-\frac{1}{y}\right) \\
& =\frac{k}{4 \pi \varepsilon_{0}}\left(1-\frac{y}{\left(L^{2}+y^{2}\right)^{1 / 2}}\right)
\end{aligned}
$$

(c)

Potential at the left end of the rod will be
$V(0,0)=\frac{k L}{4 \pi \varepsilon_{0}}$.
We next find y for which
$V(0, y)=\frac{1}{2} V(0,0)=\frac{k L}{8 \pi \varepsilon_{0}}$.
Or
$\frac{k}{4 \pi \varepsilon_{0}}\left(\left(L^{2}+y^{2}\right)^{1 / 2}-y\right)=\frac{k L}{8 \pi \varepsilon_{0}}$,
or
$\left(L^{2}+y^{2}\right)^{1 / 2}=\frac{L}{2}+y$,
or
$L^{2}+y^{2}=\frac{L^{2}}{4}+y^{2}+L y$,
and

$$
y=\frac{3}{4} L .
$$

