352.

Problem 30.35 (RHK)

For the charge configuration shown in the figure, we have to show that $V(r)$ of points on the vertical axis, assuming r ? d, is given by

$$
V=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r}\left(1+\frac{2 d}{r}\right)
$$

Solution:

For the charge configuration shown in the figure we will calculate the electric potential at point P on the vertical axis at a distance r from the charge in the middle.

$$
\begin{aligned}
V(r) & =\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{q}{r-d}+\frac{q}{r}+\frac{q}{r+d}\right) \\
& =\frac{1}{4 \pi \varepsilon_{0}} q\left(\frac{1}{r}+\frac{2 d}{r^{2}-d^{2}}\right) .
\end{aligned}
$$

For r ? d,

$$
\frac{2 d}{r^{2}-d^{2}} ; \frac{2 d}{r^{2}} .
$$

Therefore,
$V=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r}\left(1+\frac{2 d}{r}\right)$.

