350.

Problem 30.38 (RHK)

A total amount of positive charge Q is spread onto a nonconducting flat circular annulus of inner radius a and outer radius b. The charge is so distributed so that the charge density (charge per unit area) is given by $\sigma=k / r^{3}$, where r is the distance from the centre of the annulus to any point on it. We have to show that the potential at the centre of the annulus is given by

Solution:

Charge density inside the nonconducting flat circular annulus is

$$
\sigma=k / r^{3} .
$$

The total charge in the annulus is Q. Therefore, we have

$$
\begin{aligned}
Q=\int_{a}^{b} 2 \pi r \sigma(r) d r=\int_{a}^{b} 2 \pi r \frac{k}{r^{3}} d r=-2 \pi k\left[\frac{1}{r}\right]_{a}^{b} & =-2 \pi k\left(\frac{1}{b}-\frac{1}{a}\right) \\
& =2 \pi k \frac{(b-a)}{a b} .
\end{aligned}
$$

And
$k=\frac{Q a b}{2 \pi(b-a)}$.
By considering a ring of radius r concentric with the annulus and inside the annulus, and using the definition of electric potential we calculate the potential at the centre by integration

$$
\begin{aligned}
V=\int_{a}^{b} \frac{2 \pi r \sigma d r}{4 \pi \varepsilon_{0} r}=\int_{a}^{b} \frac{2 \pi r k d r}{4 \pi \varepsilon_{0} r^{4}}=-\frac{k}{4 \varepsilon_{0}}\left[\frac{1}{r^{2}}\right]_{a}^{b} & =\frac{k}{4 \varepsilon_{0}}\left(\frac{1}{a^{2}}-\frac{1}{b^{2}}\right) \\
& =\frac{k}{4 \varepsilon_{0}} \frac{\left(b^{2}-a^{2}\right)}{a^{2} b^{2}} .
\end{aligned}
$$

Substituting for k in V, we get
$V=\frac{Q}{8 \pi \varepsilon_{0}}\left(\frac{a+b}{a b}\right)$.

