348. 

## Problem 30.29 (RHK)

An electric field of approximately $100 \mathrm{~V} \mathrm{~m}^{-1}$ is often observed near the surface of the Earth. We may assume that this field is the same over the entire surface. We have to calculate the electric potential of a point on the surface.

## Solution:

Earth is a sphere of radius $R=6.37 \times 10^{6} \mathrm{~m}$. If the electric field is approximately uniform near the surface of the Earth, we may say that it is equivalent to the field produced by an amount of charge $Q$ at the centre of the Earth.

That is

$$
E=\frac{Q}{4 \pi \varepsilon_{0} R^{2}}=100 \mathrm{~V} \mathrm{~m}^{-1} .
$$

Electric potential of a point on the surface of the Earth will therefore be equal to

$$
V=\frac{Q}{4 \pi \varepsilon_{0} R}=E R=100 \times 6.37 \times 10^{6} \mathrm{~V}=637 \mathrm{MV} .
$$



