343.

Problem 30.19 (RHK)

A Geiger counter has a metal cylinder 2.10 cm in diameter along whose axis is stretched a wire $1.34 \times 10^{-4} \mathrm{~cm}$ in diameter. A potential difference of 855 V is applied between them. We have to find (a) the electric field at the surface of the wire; (b) at the surface of the cylinder.

Solution:

We will use Gauss' law to find the expression for the electric field inside the Geiger counter. Let σ be the charge per unit length on the inner wire. Because of cylindrical symmetry electric field will be perpendicular to the axis of the cylinder. We consider a cylindrical Gaussian surface of radius r centred at the axis of the Geiger counter. By applying Gauss' law, we have $2 \pi r \varepsilon_{0} E(r)=\sigma$,
or
$E(r)=\frac{\sigma}{2 \pi \varepsilon_{0} r}$.

Let r_{a} be the radius of the wire $\left(0.67 \times 10^{-4} \mathrm{~cm}\right)$ and $r_{b}(1.05 \mathrm{~cm})$ be the radius of the metallic cylinder of the Geiger counter. The potential difference across the Geiger counter will be

$$
\begin{aligned}
V=V\left(r_{b}\right)-V\left(r_{a}\right)=-\int_{r_{a}}^{r_{i}} \mathrm{r}(r) \cdot d \stackrel{\mathrm{r}}{\mathrm{r}} & =\int_{r_{a}}^{r_{b}} \frac{\sigma}{2 \pi \varepsilon_{0} r} d r \\
& =\frac{\sigma}{2 \pi \varepsilon_{0}} \ln \left(\frac{r_{b}}{r_{a}}\right) .
\end{aligned}
$$

Therefore,

$$
E(r)=\frac{1}{r} \times \frac{V}{\ln \left(\frac{r_{b}}{r_{a}}\right)}
$$

R

Electric field at the surface of the wire will be

$$
\begin{aligned}
E\left(r_{a}\right)=\frac{1}{r_{a}} \times \frac{V}{\ln \left(\frac{r_{b}}{r_{a}}\right)} & =\frac{855}{0.67 \times 10^{-6} \ln \left(\frac{1.05}{0.67 \times 10^{-4}}\right)} \mathrm{V} \mathrm{~m}^{-1} \\
& =132 \mathrm{MV} \mathrm{~m}^{-1} .
\end{aligned}
$$

Electric field at the metallic cylinder of the Geiger counter will be

$$
\begin{aligned}
E\left(r_{b}\right)=\frac{1}{r_{b}} \times \frac{V}{\ln \left(\frac{r_{b}}{r_{a}}\right)} & =\frac{855}{1.05 \times 10^{-2} \ln \left(\frac{1.05}{0.67 \times 10^{-4}}\right)} \mathrm{V} \mathrm{~m}^{-1} \\
& =8.429 \mathrm{kV} \mathrm{~m}^{-1} .
\end{aligned}
$$

