341.

Problem 30.13(RHK)

A particle of (positive) charge Q is assumed to have a fixed position at P. A second particle of mass m and (negative) charge $-q$ moves at a constant speed in a circle of radius r_{1}, centred at P. We have to derive an expression for the work W that must be done by an external agent on the second particle in order to increase the radius of the circle of motion, centred at P, to r_{2}.

Solution:

The centripetal force required for the particle of mass m
to move in a circular orbit of radius r with speed v is $\frac{m v^{2}}{r}$. This is provided by the Coulomb force of attraction between the charges $+Q$ and $-q$. It is

$$
F_{c}=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q q}{r^{2}} .
$$

We have the equation
$\frac{m \nu^{2}}{r}=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q q}{r^{2}}$,
or
$m v^{2}=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q q}{r}$.
The energy of the particle moving in a circular orbit in the attractive Coulomb field will be

$$
E=\frac{m v^{2}}{2}-\frac{1}{4 \pi \varepsilon_{0}} \frac{Q q}{r}=\frac{1}{2} \times \frac{1}{4 \pi \varepsilon_{0}} \frac{Q q}{r}-\frac{1}{4 \pi \varepsilon_{0}} \frac{Q q}{r}
$$

$$
=-\frac{1}{2} \times \frac{1}{4 \pi \varepsilon_{0}} \frac{Q q}{r}
$$

Therefore, the work done by an external agent required for increasing the radius of the circle of motion from r_{1} to r_{2} will be

$$
\begin{aligned}
W=E\left(r_{2}\right)-E\left(r_{1}\right) & =\frac{1}{2} \times \frac{Q q}{4 \pi \varepsilon_{0}}\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right) \\
& =\frac{1}{2} \times \frac{Q q}{4 \pi \varepsilon_{0}}\left(\frac{r_{2}-r_{1}}{r_{2} r_{1}}\right) .
\end{aligned}
$$

