335.

Problem 30.1 (RHK)

In the quark model of fundamental particles, a proton is composed of three quarks: two "up" quarks, each having charge $+2 e / 3$, and one "down" quark, having charge $-e / 3$. Suppose that the three quarks are equidistant from each other. We can take the distance this distance to be $1.32 \times 10^{-15} \mathrm{~m}$. We will calculate (a) the potential energy of the interaction between the two "up" quarks and (b) the total potential energy of the system.

Solution:

(a)

Distance between the two "up" quarks, a, is $1.32 \times 10^{-15} \mathrm{~m}$.

Charge of each "up" quark, q, is $+2 e / 3$.

Therefore, the potential energy of the two "up" quarks will be

$$
\begin{aligned}
U(u, u)=\frac{1}{4 \pi \varepsilon_{0}} \times \frac{(2 e / 3)^{2}}{a} & =\frac{8.99 \times 10^{9} \times 4 \times\left(1.6 \times 10^{-19}\right)^{2}}{9 \times 1.32 \times 10^{-15}} \mathrm{~J} \\
& =7.749 \times 10^{-14} \mathrm{~J} \\
& =484 \mathrm{keV}
\end{aligned}
$$

(b)

The total electric potential energy of the 2 "up" and 1 "d" quark system will be
$U(u, u, d)=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{4}{9} e^{2}-\frac{2}{9} e^{2}-\frac{2}{9} e^{2}\right)=0$.

