333.

Problem 29.49 (RHK)

In a 1911 paper, Ernst Rutherford said:
"In order to form some idea of the forces required to deflect an alpha particle through a large angle, consider an atom containing a point positive charge Ze at its centre and surrounded by a distribution of negative electricity, -Ze uniformly distributed within a sphere of radius R. The electric field $E \ldots$ at a distance r from the centre for a point inside the atom is

$$
E=\frac{Z e}{4 \pi \varepsilon_{0}}\left(\frac{1}{r^{2}}-\frac{r}{R^{3}}\right) . "
$$

Solution:

As charge $-Z e$ is uniformly distributed over a sphere of radius R , the volume charge density inside the sphere is

$$
\rho=-\frac{3 Z e}{4 \pi R^{3}} .
$$

Point charge of amount $+Z e$ is located at the centre of the sphere. Therefore, the charge contained inside a sphere of radius r is
$q(r)=Z e-Z e\left(\frac{r^{3}}{R^{3}}\right)=Z e\left(1-\frac{r^{3}}{R^{3}}\right)$.
Therefore, electric field at a distance r from the centre of the sphere will be

$$
E(r)=\frac{q(r)}{4 \pi \varepsilon_{0} r^{2}}=\frac{Z e}{4 \pi \varepsilon_{0}}\left(\frac{1}{r^{2}}-\frac{r}{R^{3}}\right) .
$$

