332.

Problem 29.48 (RHK)

By constructing a spherical Gaussian surface centred on an infinite line of charge and by calculating the flux through the sphere we will show that the Gauss' law is satisfied.

Solution:

normal to the line.
We consider a spherical Gaussian surface of radius R centred on the line as shown in the figure. Flux through Gaussian surface of area
$2 \pi R \sin \theta R d \theta$
will be

$$
\begin{aligned}
\Delta \Phi=2 \pi R \sin \theta R d \theta \frac{\stackrel{\perp}{R} \cdot \stackrel{\perp}{E}}{R} & =2 \pi R \sin \theta R d \theta \frac{\lambda \sin \theta}{2 \pi \varepsilon_{0} R \sin \theta} \\
& =\frac{\lambda \sin \theta R d \theta}{\varepsilon_{0}}
\end{aligned}
$$

Therefore,
$\Phi(R)=\int_{0}^{\pi} \frac{\lambda R \sin \theta d \theta}{\varepsilon_{0}}=\frac{2 \lambda R}{\varepsilon_{0}}$.
And charge contained inside the sphere is $2 R \lambda$.
Therefore, we have
$\varepsilon_{0} \Phi(R)=q$,
and Gauss' law is verified.

