330. 

## Problem 29.47 (RHK)

A solid nonconducting sphere of radius $R$ carries a non-uniform charge distribution, the charge density being $\rho=\rho_{s} r / R$, where $\rho_{s}$ is a constant and $r$ is the distance from the sphere. We have to show that (a) the total charge on the sphere is $Q=\pi \rho_{s} R^{3}$ and (b) the electric field inside the sphere is given by

(a)

The charge density in the solid nonconducting sphere of radius R is given by the function $\rho=\rho_{s} r / R$,
where $\rho_{s}$ is a constant and $r$ is the distance from the sphere.

The total charge in the sphere can be obtained by integrating the density over the volume of the sphere
$Q=\int_{0}^{R} 4 \pi r^{2} \rho(r) d r=4 \pi \rho_{s} \int_{0}^{R} \frac{r^{3}}{R} d r=\pi \rho_{s} R^{3}$.
(b)

The electric field at a point which is at a distance $r$ from the centre of the sphere will be determined by the total charge contained inside the sphere of radius $r$. We therefore have

$$
E(r)=\frac{1}{4 \pi \varepsilon_{0} r^{2}} \int_{0}^{r} 4 \pi r^{\prime 2} \rho_{s} \frac{r^{\prime}}{R} d r^{\prime}=\frac{\rho_{s} r^{2}}{4 \varepsilon_{0} R}=\frac{Q r^{2}}{4 \pi \varepsilon_{0} R^{4}}
$$



