329.

Problem 29.31 (RHK)

A proton orbits with speed $v=294 \mathrm{~km} \mathrm{~s}^{-1}$ just outside a charged sphere of radius $r=1.13 \mathrm{~cm}$. We have to find the charge on the sphere.

Solution:

Let Q be the charge on the sphere. As the proton is orbiting the sphere in a circular orbit of radius
$r=1.13 \mathrm{~cm}$. The centripetal force for circular motion will be provided by the Coulomb attraction of the proton by the charge on the sphere. We therefore have the equation

$$
\frac{|Q| e}{4 \pi \varepsilon_{0} r^{2}}=\frac{m_{p} v^{2}}{r},
$$

where mass of the proton, $m_{p}=1.67 \times 10^{-27} \mathrm{~kg}$, and charge of the proton, $e=1.6 \times 10^{-19} \mathrm{C}$.

It is given that $v=294 \mathrm{~km} \mathrm{~s}^{-1}$, and
$r=1.13 \mathrm{~cm}$.
Therefore,

$$
\begin{aligned}
|Q|=\frac{4 \pi \varepsilon_{0} m_{p} r v^{2}}{e} & =\frac{1.67 \times 10^{-27} \times 1.13 \times 10^{-2} \times\left(294 \times 10^{3}\right)^{2}}{8.99 \times 10^{9} \times 1.6 \times 10^{-19}} \mathrm{C} \\
& =1.13 \times 10^{-9} \mathrm{C}
\end{aligned}
$$

As the proton is attracted by the charge on the sphere, the sign of the charge is negative.

Therefore,
$Q=-1.13 \mathrm{nC}$.

