325.

Problem 24.55P (HRW)

A nonconducting spherical shell, of inner radius a and outer radius b, has a volume charge density $\rho=A / r$ (within its thickness), where A is a constant and r is the distance from the centre of the shell. In addition, a point charge q is located at the centre. We have to find the value of A if the electric field in the shell $(a \leq r \leq b)$ is to be uniform.

Solution:

The inner and outer radii of the nonconducting spherical shell are a and b, respectively. It is given that the shell contains a spherically symmetric charge distribution. The volume charge density within the shell is described by the function
$\rho=\frac{A}{r}$,
where A is a constant. A point charge q is placed at the centre of the spherical shell.

We have to determine the constant A for which the electric field inside the shell, $a \leq r \leq b$, will be uniform, that is it will not depend on r.

We will apply Gauss' law for calculating the electric field at a distance r from the centre of the shell and within the shell. Let us consider a spherical surface of radius r such that $a \leq r \leq b$. Because of the spherical symmetry the field can be a function of r only. The outward flux on this surface will be

$$
\Phi(r)=4 \pi r^{2} E(r) .
$$

The total amount of charge contained within this surface will be

$$
\begin{aligned}
Q & =\int_{a}^{r} 4 \pi r^{2} \rho(r) d r+q \\
& =\int_{a}^{r} 4 \pi r^{2} \times \frac{A}{r} d r+q=2 \pi A\left(r^{2}-a^{2}\right)+q .
\end{aligned}
$$

Gauss' law sates that

$$
\Phi(r)=\frac{Q}{\varepsilon_{0}}
$$

Therefore,
$E(r)=\frac{A}{2 \varepsilon_{0}}+\left(\frac{q}{4 \pi \varepsilon_{0}}-\frac{a^{2} A}{2 \varepsilon_{0}}\right) \times \frac{1}{r^{2}}$.
For the field $E(r)$ to be uniform, the condition is
$\left(\frac{q}{4 \pi \varepsilon_{0}}-\frac{a^{2} A}{2 \varepsilon_{0}}\right)=0$,
or
$A=\frac{q}{2 \pi a^{2}}$.

