323.

Problem 29.25 (RHK)

A small sphere whose mass m is 1.12 mg carries a charge q = 19.7 nC. It hangs in the Earth's gravitational field from a silk thread that makes an angle $\theta = 27.4^{\circ}$ with a large uniformly charged nonconducting sheet as shown in the figure. We have to calculate the uniform charge density σ for the sheet.

Solution:

We will draw the free-body diagram of forces acting on the charged sphere of mass m carrying charge q in the electric field produced by a large nonconducting sheet with charge density σ .

It is given that at equilibrium the string with which the spherical ball has been suspended is at an inclination with respect to the vertical. Angle of inclination is

 $\theta = 27.4^{\circ}$.

Electric field due to a large sheet having charge density σ will be perpendicular to the sheet and its magnitude will be

$$E = \frac{\sigma}{2\varepsilon_0}$$

Resolving the forces acting on the charged sphere in the horizontal and vertical directions and requiring that at equilibrium the net components will be zero, we get $T\cos\theta = mg$,

and

$$T\sin\theta = \frac{q\sigma}{2\varepsilon_0} \; .$$

It is given that

 $\theta = 27.4^{\circ}$, $m = 1.12 \times 10^{-6}$ kg, and $q = 19.7 \times 10^{-9}$ C.

Therefore,

$$\tan\theta = \frac{q\sigma}{2\varepsilon_0 mg}.$$

We therefore find

$$\sigma = 2 \times 8.85 \times 10^{-12} \times 1.12 \times 10^{-6} \times 9.81 \times \frac{\tan(27.4^{\circ})}{19.7 \times 10^{-9}} \text{ Cm}^{-2}$$

= 5.12 × 10⁻⁹ Cm⁻²
= 5.12 nCm⁻².

