319.

Problem 29.16(RHK)

$E=\sigma / \varepsilon_{0}$ gives the electric field at points near a charged conducting surface. By applying this equation to a conducting sphere of radius r, carrying charge q on its surface, we will show that the electric field outside the sphere is the same as the field of a point charge at the position of the centre of the sphere.

Solution:

We will use the result that the electric field at points near the surface of a charged conductor is given by

$$
E=\sigma / \varepsilon_{0} .
$$

Let us consider a conducting sphere of radius r, carrying a charge q on its surface. The surface charge density on the conducting sphere will be

$$
\sigma=\frac{q}{4 \pi r^{2}} .
$$

By using the result $E=\sigma / \varepsilon_{0}$, we note that the electric field at points near the surface of the spherical conductor will be

$$
E=\frac{q}{4 \pi \varepsilon_{0} r^{2}} .
$$

This is the same as the electric field outside the sphere of radius r due to a point charge q located at the centre.

