317.

Problem 29.13 (RHK)

The electric field components as shown in the figure are $E_{x}=b x^{1 / 2}, E_{y}=E_{z}=0$, in which $b=8830 \mathrm{~N} \mathrm{C}^{-1} \mathrm{~m}^{-1 / 2}$. We have to calculate (a) the flux Φ_{E} through the cube and (b) the charge within the cube. We may assume that $a=13.0 \mathrm{~cm}$.

Solution:

(a)

The electric field components as shown in the figure are $E_{x}=b x^{1 / 2}, E_{y}=E_{z}=0$, in which $b=8830 \mathrm{~N} \mathrm{C}^{-1} \mathrm{~m}^{-1 / 2}$.

Therefore, the non-zero contributions to the flux due to the electric field to the Gaussian surface of the cube
places with respect to the coordinate axes will be from the $Y-Z$ faces located at $x=a$ and $x=2 a$, where $a=13.0 \mathrm{~cm}$.

Therefore,

$$
\begin{aligned}
\Phi_{E} & =8830 \times\left(-0.13^{2} \times 0.13^{1 / 2}+0.13^{2} \times 0.26^{1 / 2}\right) \mathrm{NC}^{-1} \mathrm{~m}^{2} \\
& =22.7 \mathrm{~N} \mathrm{C}^{-1} \mathrm{~m}^{2} .
\end{aligned}
$$

(b)

The charge q inside the cube can be calculated using the
Gauss' law
$q=\varepsilon_{0} \Phi_{E}=8.85 \times 10^{-12} \times 22.27 \mathrm{C}$

$$
\begin{aligned}
& =1.97 \times 10^{-10} \mathrm{C} \\
& =197 \mathrm{pC} .
\end{aligned}
$$

