315.

Problem 29.11 (RHK)

"Gauss' law for gravitation" is

$$
\frac{1}{4 \pi G} \Phi_{g}=\frac{1}{4 \pi G} \tilde{N}_{\underline{\mathrm{r}}}^{\mathrm{r}} \cdot d A=-m,
$$

where m is the enclosed mass and G is the universal gravitational constant. We will derive Newton's law of gravitation from this and explain the significance of the minus sign.

Solution:

Consider a Gaussian sphere, a sphere of radius r centred at the mass point of mass, m. We assume that the gravitational field $\stackrel{1}{g}$ due to the mass point is radial and its magnitude is equal for all points at a distance r from it but the direction of the gravitational field varies and is toward the mass point.

We calculate the gravitational flux under the above assumptions. It will be $\Phi_{g}=-4 \pi r^{2} g$.

The Gauss' law for gravitation is
$\frac{1}{4 \pi G} \Phi_{g}=\frac{1}{4 \pi G} \mathbb{N}^{\sim} \stackrel{r}{\mathrm{r}} \cdot d A=-m$.
We therefore have
$-\frac{r^{2} g}{G}=-m$,
And
$g=\frac{G m}{r^{2}}$,
which is the Newton's law of gravitation. The significance of minus sign in the Gauss' law for gravitation is that the gravitational field due to a mass point is radial and is attractive.

