314.

Problem 29.9 (RHK)

It is found experimentally that the electric field in a certain region of the Earth's atmosphere is directed vertically down. At an altitude of 300 m the field is $58 \mathrm{~N} \mathrm{C}^{-1}$ and at an altitude of 200 m it is $110 \mathrm{~N} \mathrm{C}^{-1}$. We have to find the net amount of charge contained in a cube of 100 m on edge located between 200 and 300 m . We can neglect the curvature of the Earth.

Solution:

As the electric field in the regron is directed vertically down ward, the outward normal to the Gaussian surface of the cube of 100 m on edge at the height of 300 m will be in direction opposite to the electric field, and the outward normal to the Gaussian surface of the cube at the height of 200 m will be in the direction of the field.
Therefore, the total flux of the electric field through the Gaussian surface of the cube will be

$$
\begin{aligned}
\Phi_{E} & =\left\{(100)^{2} \times(-58)+(100)^{2} \times 110\right\} \mathrm{NC}^{-1} \mathrm{~m}^{2} \\
& =52 \times 10^{4} \mathrm{~N} \mathrm{C}^{-1} \mathrm{~m}^{2} .
\end{aligned}
$$

According to Gauss' law
$\varepsilon_{0} \Phi_{E}=q$, where q is the charge enclosed by the closed Gaussian surface.

Therefore, the net amount of charge contained inside the cube will be

$$
\begin{aligned}
q & =52 \times 10^{4} \times 8.85 \times 10^{-12} \mathrm{C} \\
& =4.6 \mu \mathrm{C} .
\end{aligned}
$$

