308.

Problem 28.51 (RHK)

We have to find the work required to turn an electric dipole end for end in a uniform electric field \dot{E} , in terms of the dipole moment \dot{p} and the initial angle θ_0 between \dot{p} and \dot{E} .

Solution:

We recall that the potential energy $U(\theta)$ of an electric dipole in an electric field, when θ is the angle between p and \dot{E} , is $U(\theta) = -pE\cos\theta$.

If an electric dipole is flipped from its initial position with angle θ_0 its final angle will be $\pi + \theta_0$.

So the work done in flipping a dipole will be

 $U(\pi + \theta_0) - U(\theta_0) = 2 p E \cos \theta_0 .$