308.

Problem 28.51 (RHK)

We have to find the work required to turn an electric dipole end for end in a uniform electric field $\stackrel{\perp}{E}$, in terms of the dipole moment $\stackrel{\stackrel{1}{p}}{ }$ and the initial angle θ_{0} between $\stackrel{\stackrel{1}{p}}{ }$ and $\stackrel{\perp}{E}$.

Solution:

We recall that the potential energy $U(\theta)$ of an electric dipole in an electric field, when θ is the angle between $\stackrel{1}{p}$ and $\stackrel{\stackrel{1}{E}, ~ i s ~}{\text { is }}$
$U(\theta)=-p E \cos \theta$
If an electric dipole is flipped from its initial position with angle θ_{0} its final angle will be $\pi+\theta_{0}$.

So the work done in flipping a dipole will be
$U\left(\pi+\theta_{0}\right)-U\left(\theta_{0}\right)=2 p E \cos \theta_{0}$.

