303.

Problem 28.37 (RHK)

An electron moving with a speed of $4.86 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$ is shot parallel to an electric field of strength $1030 \mathrm{NC}^{-1}$ arranged so as to retard its motion. We have to find (a) the distance the electrons will travel in the field before coming (momentarily) to rest; (b) the time that will have lapsed. (c) If the electric field ends abruptly after 7.88 mm , we have to calculate the fraction of initial kinetic energy that the electron will lose in traversing it.

Solution:

We recall the following data:

$$
\begin{aligned}
& m_{e}=9.11 \times 10^{-31} \mathrm{~kg}, \\
& |\mathrm{e}|=1.60 \times 10^{-19} \mathrm{C} .
\end{aligned}
$$

(a)

Electrons will be decelerating in the retarding electric field with the acceleration

$$
\begin{aligned}
|a|=\frac{e E}{m} & =\frac{1.60 \times 10^{-19} \times 1030}{9.11 \times 10^{-31}} \mathrm{~m} \mathrm{~s}^{-2} \\
& =1.81 \times 10^{14} \mathrm{~m} \mathrm{~s}^{-2} .
\end{aligned}
$$

The distance d the electrons entering the electric field with initial speed $4.86 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$ will travel before momentarily coming to rest can be calculated using the kinematics. We have
$d=\frac{u^{2}}{2|a|}=\frac{\left(4.86 \times 10^{6}\right)^{2}}{2 \times 1.81 \times 10^{14}} \mathrm{~m}=6.52 \times 10^{-2} \mathrm{~m}=6.52 \mathrm{~cm}$.
(b)

The time that will have lapsed between when the electrons enter the field and when they momentarily come to rest can be calculated using the relation $u=|a| t$.

We find
$t=\frac{4.86 \times 10^{6}}{1.81 \times 10^{14}} \mathrm{~s}=2.68 \times 10^{-8} \mathrm{~s}=26.8 \mathrm{~ns}$.
(c)

Fraction of kinetic energy that electrons will lose in traversing 7.88 mm in the field can be calculated using the kinematical relation $u_{i}^{2}-u_{f}^{2}=2|a| d$.

We find

$$
\begin{aligned}
f=\frac{\frac{1}{2} m\left(u_{i}^{2}-u_{f}^{2}\right)}{\frac{1}{2} m u_{i}^{2}}=\frac{2|a| d}{u_{i}^{2}} & =\frac{2 \times 1.81 \times 10^{14} \times 7.88 \times 10^{-2}}{\left(4.86 \times 10^{6}\right)^{2}} \\
& =0.121 \text { or } 12.1 \%
\end{aligned}
$$

