299.

Problem 28.31 (RHK)

A thin non-conducting rod of finite length L carries a total charge q, spread uniformly along it. We have to show that E at point P on the perpendicular bisector is given by

Solution:

As charge q is uniformly distributed over a length L , the linear charge density is

$$
\lambda=\frac{q}{L}
$$

Looking at the direction of the electric field vectors at point P due to the symmetrically placed charge elements
on the two sides of the rod, we note that the resultant electric field will be along the Y-axis.

The magnitude of the electric field at point P will be given by the integral

$$
\begin{aligned}
& E(y)=2 \int_{0}^{L / 2} \frac{\lambda d x}{4 \pi \varepsilon_{0}\left(x^{2}+y^{2}\right)} \frac{y}{\left(x^{2}+y^{2}\right)^{1 / 2}} \\
& \quad=\frac{2 q y}{4 \pi \varepsilon_{0} L} \int_{0}^{L / 2} \frac{d x}{\left(x^{2}+y^{2}\right)^{3 / 2}} .
\end{aligned}
$$

For calculating this integral, we make the substitution $x=y \tan \theta$.

We therefore have $d x=y \sec ^{2} \theta d \theta$.

And

$$
\begin{aligned}
E(y)= & \frac{2 q y}{4 \pi \varepsilon_{0} L} \int_{0}^{\tan ^{-1}(L / 2 y)} \frac{y \sec ^{2} \theta d \theta}{y^{3} \sec ^{3} \theta} \\
= & \frac{q}{2 \pi \varepsilon_{0} L y} \int_{0}^{\tan ^{-1}(L / 2 y)} \cos \theta d \theta
\end{aligned}=\frac{q}{2 \pi \varepsilon_{0} L y} \sin \left(\tan ^{-1}(L / 2 y)\right) .
$$

Or

$$
E(y)=\frac{q}{2 \pi \varepsilon_{0} y} \frac{1}{\left(L^{2}+4 y^{2}\right)^{1 / 2}} .
$$

