296.

Problem 28.25 (RHK)

We have to find the distance along the charged disk of radius R where the electric field strength is equal to one-half of the value of the field at the surface of the disk at the centre.

Solution:

We recall that the electric field strength at a distance z along the axis from the centre of a charged disk of radius R and surface charge density σ is given by the expression

$$
E_{z}=\frac{\sigma}{2 \varepsilon_{0}}\left(1-\frac{z}{\sqrt{z^{2}+R^{2}}}\right)
$$

From this we note that the electric field strength at the centre of the disk is
$E_{0}=\frac{\sigma}{2 \varepsilon_{0}}$.
Therefore, the distance z along the axis where the
strength of the electric field will be one-half of its value at the centre will be given by the equation
$\frac{\sigma}{2 \varepsilon_{0}}\left(1-\frac{z}{\sqrt{z^{2}+R^{2}}}\right)=\frac{1}{2} E_{0}$
or
$\frac{z}{\sqrt{z^{2}+R^{2}}}=\frac{1}{2}$.

We therefore have the condition that
$3 z^{2}=R^{2}$,
or
$z=\frac{1}{\sqrt{3}} R$.

