295.

Problem 28.15 (RHK)

Consider a ring of charge. Suppose that the charge q is not distributed uniformly over the ring but that charge q_{1} is distributed uniformly over half the circumference and charge q_{2} is distributed uniformly over the other half. Let $q_{1}+q_{2}=q$. We have to find (a) the component of the electric field at any point on the axis directed along the axis and compare it with the uniform case; (b) the component of the electric field at any point on the axis perpendicular to the axis and compare it with the uniform case.

Solution:

As shown in the figure, on the circumference of a ring of radius R divided into two equal parts charge q_{1} is distributed uniformly on part and charge q_{2} is distributed uniformly on the other part. We will calculate the electric field at point P on the axis of the ring. A coordinate system has been fixed as shown in the figure.
Linear charge densities on the two halves of the ring will be

$$
\lambda_{1}=\frac{q_{1}}{\pi R}, \text { and } \lambda_{2}=\frac{q_{2}}{\pi R} .
$$

The component of the electric field at point P on the axis directed along it that is along the X-direction will be

$$
\begin{aligned}
E_{x}= & \int_{0}^{\pi R} \frac{\lambda_{1} d s}{4 \pi \varepsilon_{0}\left(x^{2}+R^{2}\right)} \times \frac{x}{\left(x^{2}+R^{2}\right)^{1 / 2}} \\
& +\int_{\pi R}^{2 \pi R} \frac{\lambda_{2} d s}{4 \pi \varepsilon_{0}\left(x^{2}+R^{2}\right)} \times \frac{x}{\left(x^{2}+R^{2}\right)^{1 / 2}} \\
= & \left(\lambda_{1} \pi R+\lambda_{2} \pi R\right) \frac{1}{4 \pi \varepsilon_{0}} \times \frac{x}{\left(x^{2}+R^{2}\right)^{3 / 2}} \\
= & \frac{\left(q_{1}+q_{2}\right) x}{4 \pi \varepsilon_{0}\left(x^{2}+R^{2}\right)^{3 / 2}}=\frac{q x}{4 \pi \varepsilon_{0}\left(x^{2}+R^{2}\right)^{3 / 2}} .
\end{aligned}
$$

We note that Y -axis has been chosen so that it divides the charge distribution on the ring symmetrically. We calculate the component of the electric field along the Y-axis due to charge distributions λ_{1} and λ_{2} separately.

First we calculate E_{y}^{1} the electric field component along the Y-axis due to charge distribution λ_{1}. It will be

$$
\begin{aligned}
E_{y}^{1} & =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\lambda_{1} R d \varphi}{4 \pi \varepsilon_{0}\left(x^{2}+R^{2}\right)} \times \frac{R \cos \varphi}{\left(x^{2}+R^{2}\right)^{1 / 2}} \\
& =\frac{\lambda_{1} R \times 2 R}{4 \pi \varepsilon_{0}\left(x^{2}+R^{2}\right)^{3 / 2}}=\frac{q_{1}}{2 \pi^{2} \varepsilon_{0}\left(x^{2}+R^{2}\right)^{3 / 2}} .
\end{aligned}
$$

Similarly, we can calculate E_{y}^{2} the electric field component along the Y-axis due to charge distribution λ_{2}. It will be

$$
E_{y}^{2}=-\frac{q_{2}}{2 \pi^{2} \varepsilon_{0}} \frac{R}{\left(x^{2}+R^{2}\right)^{3 / 2}} .
$$

Therefore, E_{y} will be

$$
\begin{aligned}
E_{y} & =\frac{q_{1}}{2 \pi^{2} \varepsilon_{0}} \frac{R}{\left(x^{2}+R^{2}\right)^{3 / 2}}-\frac{q_{2}}{2 \pi^{2} \varepsilon_{0}} \frac{R}{\left(x^{2}+R^{2}\right)^{3 / 2}} \\
& =\frac{\left(q_{1}-q_{2}\right)}{2 \pi^{2} \varepsilon_{0}} \frac{R}{\left(x^{2}+R^{2}\right)^{3 / 2}} .
\end{aligned}
$$

We note that if the charge distribution along the circumference of the ring was uniform the component E_{y} will be zero.

By symmetry, we note that E_{z} is zero.

