293.

Problem 28.13(RHK)

One type of electric quadrupole is formed by four charges located at the vertices of a square of side $2 a$. Point P lies a distance x from the centre of the quadrupole on a line parallel to two sides of the square as shown in the figure. For x ? a, we have to show that the electric field at P is approximately given by

Solution:

A quadrupole is a combination of four charges of equal magnitude with two of opposite signs such that the total charge is zero. A quadrupole configuration is shown in the figure. It can be considered as a combination of two dipoles. We recall that the field at a distant point from a dipole at the location as shown in the figure below is

$$
E=\frac{1}{4 \pi \varepsilon_{0}} \times \frac{p}{x^{3}}
$$

The net electric field at P in the configuration of the quadrupole shown in the figure can be found as a vector sum of electric fields due to the two dipoles. It is given by

$$
E_{P}=\frac{1}{4 \pi \varepsilon_{0}} \frac{p}{(x-a)^{3}}-\frac{1}{4 \pi \varepsilon_{0}} \frac{p}{(x+a)^{3}} .
$$

For x ? a, we approximate
$\left(1+\frac{a}{x}\right)^{n} ; 1+n \frac{a}{x}$.
In this approximation
$E_{P}=\frac{1}{4 \pi \varepsilon_{0}} \frac{p}{x^{3}}\left(\frac{6 a}{x}\right)$.
As $p=2 q a$, we find
$E_{P}=\frac{3\left(2 q a^{2}\right)}{2 \pi \varepsilon_{0} x^{4}}$.

