292.

Problem 28.12 (RHK)

We have to show that the components of $\stackrel{1}{E}$ due to a dipole are given, at distant points, by
$E_{x}=\frac{1}{4 \pi \varepsilon_{0}} \frac{3 p x z}{\left(x^{2}+z^{2}\right)^{5 / 2}}, E_{y}=\frac{1}{4 \pi \varepsilon_{0}} \frac{p\left(2 z^{2}-x^{2}\right)}{\left(x^{2}+z^{2}\right)^{5 / 2}}$,
where x and z are coordinates of point P in the figure.

Solution:

We note from the diagram that the distance of the point P from the charge $+q$ is $r_{+}=\left(x^{2}+\left(z-\frac{d}{2}\right)^{2}\right)^{1 / 2}$
and its distance from the charge $-q$ is
$r_{-}=\left(x^{2}+\left(z+\frac{d}{2}\right)^{2}\right)^{1 / 2}$.
X-component of the electric field due to the dipole at the point P will be

$$
\begin{aligned}
E_{x} & =\frac{q}{4 \pi \varepsilon_{0} r_{+}^{2}} \times \frac{x}{r_{+}}-\frac{q}{4 \pi \varepsilon_{0} r_{-}} \times \frac{x}{r_{-}} \\
& =\frac{q x}{4 \pi \varepsilon_{0}}\left(\frac{1}{r_{+}^{3}}-\frac{1}{r_{-}^{3}}\right)=\frac{q x}{4 \pi \varepsilon_{0}\left(x^{2}+z^{2}\right)^{3 / 2}}\binom{\left(1+\frac{\frac{d^{2}}{4}-d z}{x^{2}+z^{2}}\right)^{-3 / 2}-}{\left(1+\frac{\frac{d^{2}}{4}+d z}{x^{2}+z^{2}}\right)^{-3 / 2}}
\end{aligned}
$$

As the point P is distant from the dipole, we can assume that
$\frac{\frac{d^{2}}{4}-d z}{x^{2}+z^{2}}=1$, and also $\frac{\frac{d^{2}}{4}+d z}{x^{2}+z^{2}}=1$
We use the approximation that
$(1+\xi)^{n} ; 1+n \xi$,
for $\xi=1$,
and we get
$E_{x} ; \frac{3 q d x z}{4 \pi \varepsilon_{0}\left(x^{2}+z^{2}\right)^{5 / 2}}=\frac{3 p x z}{4 \pi \varepsilon_{0}\left(x^{2}+z^{2}\right)^{5 / 2}}$,
where we have substituted $q d=p$, for the dipole moment.

The Z-component of the electric field is

$$
\begin{aligned}
& E_{z}=\frac{q}{4 \pi \varepsilon_{0} r_{+}^{2}} \times \frac{\left(z+\frac{d}{2}\right)}{r_{+}}-\frac{q}{4 \pi \varepsilon_{0} r_{-}^{2}} \times \frac{\left(z+\frac{d}{2}\right)}{r_{-}} \\
& =\frac{q}{4 \pi \varepsilon_{0}} \times \frac{1}{\left(x^{2}+z^{2}\right)^{3 / 2}}\binom{\left(z-\frac{d}{2}\right)\left(1+\frac{\frac{d^{2}}{4}-d z}{x^{2}+z^{2}}\right)^{-3 / 2}-}{\left(z+\frac{d}{2}\right)\left(1+\frac{\frac{d^{2}}{4}+d z}{x^{2}+z^{2}}\right)^{-3 / 2}} .
\end{aligned}
$$

As the point P is distant from the dipole, we can assume that
$\frac{\frac{d^{2}}{4}-d z}{x^{2}+z^{2}}=1$, and also $\frac{\frac{d^{2}}{4}+d z}{x^{2}+z^{2}}=1$.

We use the approximation that
$(1+\xi)^{n} ; 1+n \xi$,
for $\xi=1$,
and we have

$$
E_{z} ; \frac{q}{4 \pi \varepsilon_{0}} \times \frac{1}{\left(x^{2}+z^{2}\right)^{3 / 2}}\binom{\left(z-\frac{d}{2}\right)\left(1-\frac{\frac{3}{2}\left(\frac{d^{2}}{4}-d z\right)}{\left(x^{2}+z^{2}\right)}\right)-}{\left(z+\frac{d}{2}\right)\left(1-\frac{\frac{3}{2}\left(\frac{d^{2}}{4}+d z\right)}{\left(x^{2}+z^{2}\right)}\right)}
$$

On simplifying the algebraic expression, we easily get

$$
E_{z}=\frac{p}{4 \pi \varepsilon_{0}} \times \frac{\left(2 z^{2}-x^{2}\right)}{\left(x^{2}+z^{2}\right)^{5 / 2}}
$$

