290.

Problem 27.36 (RHK)

In the radioactive decay of ${ }^{238} \mathrm{U}$ $\left({ }^{238} \mathrm{U} \rightarrow{ }^{4} \mathrm{He}+{ }^{234} \mathrm{Th}\right)$, the centre of the emerging ${ }^{4} \mathrm{He}$ particle is, at a certain instant, $12 \times 10^{-15} \mathrm{~m}$ from the centre of the residual ${ }^{234} \mathrm{Th}$ nucleus. We have to find at that instant (a) the force on the ${ }^{4} \mathrm{He}$ particle, and (b) its acceleration.

Solution:

We note that the atomic number of Th is 92 . That is a nucleus of Th has $+92 e$ units of charge; and that the atomic number of He is 2 and it has $+2 e$ units of charge.

Therefore, at the instant when ${ }^{4} \mathrm{He}$ particle is
$12 \times 10^{-15} \mathrm{~m}$ from the ${ }^{234} \mathrm{Th}$ particle, the magnitude of the electrostatic force on it will be

$$
\begin{aligned}
F_{c}=\frac{(2 e) \times(92 e)}{4 \pi \varepsilon_{0} d^{2}} & =\frac{8.99 \times 10^{9} \times 184 \times\left(1.6 \times 10^{-19}\right)^{2}}{\left(12 \times 10^{-15}\right)^{2}} \mathrm{~N} \\
& =294 \mathrm{~N} .
\end{aligned}
$$

(b)

Molar mass of ${ }^{4} \mathrm{He}$ is 4.0026 g . Therefore, rest mass of a ${ }^{4} \mathrm{He}$ particle will be
$m_{4_{\mathrm{He}}}=\frac{4.0026}{6.02 \times 10^{23}} \mathrm{~g}=0.665 \times 10^{-26} \mathrm{~kg}$.
Acceleration of the ${ }^{4} \mathrm{He}$ particle at that instant, if calculated using the Newtonian mechanics, will be

$$
a=\frac{F_{c}}{m_{4} \mathrm{He}}=\frac{294}{0.665 \times 10^{-26}} \mathrm{~m} \mathrm{~s}^{-2}=4.42 \times 10^{28} \mathrm{~m} \mathrm{~s}^{-2}
$$

But as the ${ }^{4} \mathrm{He}$ particle will be relativistic, we should use its relativistic mass in calculating its acceleration.

