288.

Problem 27.27 (RHK)

A neutron is thought to be composed of one "up" quark of charge $+\frac{2}{3} e$ and two "down" quarks each having charge $-\frac{1}{3} e$. If the down quarks are $2.6 \times 10^{-15} \mathrm{~m}$ apart inside the neutron, we have to calculate the repulsive electrical force between them.

Solution:

Charge of a down-quark is $-\frac{1}{3} e$, where $e=1.6 \times 10^{-19} \mathrm{C}$. It is given that the separation between the two downquarks inside a neutron is $2.6 \times 10^{-15} \mathrm{~m}$. Therefore, the magnitude of the force of repulsion between the two down-quarks inside a neutron will be

$$
F=\frac{\left(\frac{e}{3}\right)^{2}}{4 \pi \varepsilon_{0} r^{2}}=\frac{\left(1.6 \times 10^{-19}\right)^{2} \times 8.99 \times 10^{9}}{9 \times\left(2.6 \times 10^{-15}\right)^{2}} \mathrm{~N}=3.78 \mathrm{~N} .
$$

