283.

Problem 27.26 (RHK)

The electrostatic force between two identical ions that are separated by a distance of $5.0 \times 10^{-10} \mathrm{~m}$ is $3.7 \times 10^{-9} \mathrm{~N}$. (a) We have to find the charge on each ion. (b) We have to find the number of electrons that are missing from each ion.

Solution:

Let the charge on each ion be q C. Separation of the two ions is
$r=5.0 \times 10^{-10} \mathrm{~m}$.
The magnitude of electrostatic force on each ion due to the other is
$F=3.7 \times 10^{-9} \mathrm{~N}$.
Therefore, by Coulomb's law we have
$\frac{q^{2}}{4 \pi \varepsilon_{0} r^{2}}=F$.
And
$q=\left(\frac{3.7 \times 10^{-9} \times 25 \times 10^{-20}}{8.99 \times 10^{9}}\right)^{1 / 2} \mathrm{C}=3.2 \times 10^{-19} \mathrm{C}$.

The magnitude of charge on an electron is
$e=1.6 \times 10^{-19} \mathrm{C}$.
Therefore,
$q=2 e$.
We thus find that 2 electrons are missing from each ion for it to have 2 units of positive charge.

