282.

Problem 27.23 (RHK)

Two positive charges $+Q$ are held fixed a distance d apart. A particle of negative charge $-q$ and mass m is placed midway between them and displaced along the line joining the charges.

We have to calculate the period of oscillation.

Solution:

Two positive charges $+Q$ are held fixed at $-d / 2$ and $+d / 2$ from the origin of X-axis as shown in the figure. A charge q is placed at the origin which is midway between the two charges $+Q$ and is displaced along the X-axis by a small distance x. We assume

$$
x=d \text {. }
$$

The net Coulomb force on the charge q will be

$$
\begin{aligned}
\stackrel{\mathrm{r}}{F}(x) & =\frac{Q q}{4 \pi \varepsilon_{0}}\left(\frac{1}{\left(\frac{d}{2}+x\right)^{2}}-\frac{1}{\left(\frac{d}{2}-x\right)^{2}}\right) \times \hat{x} \\
& =\frac{Q q}{\pi \varepsilon_{0} d^{2}}\left(\frac{1}{\left(1+\frac{2 x}{d}\right)^{2}}-\frac{1}{\left(1-\frac{2 x}{d}\right)^{2}}\right) \times \hat{x} \\
& ;-\frac{8 Q q x}{\pi \varepsilon_{0} d^{3}} \hat{x} .
\end{aligned}
$$

Equation of motion of the charge q of mass m will therefore be

$$
m \frac{d^{2} \frac{\mathrm{r}}{x}}{d t^{2}}=\stackrel{\mathrm{r}}{F}(x)=-\frac{8 Q q x}{\pi \varepsilon_{0} d^{3}} \hat{x} .
$$

Scalar form of this equation is

$$
m \frac{d^{2} x}{d t^{2}}+\frac{8 Q q x}{\pi \varepsilon_{0} d^{3}}=0 .
$$

It is of the form of equation of simple harmonic motion (SHM). The period of SHM described by this equation will be

$$
\frac{2 \pi}{T}=\left(\frac{8 Q q}{\pi \varepsilon_{0} m d^{3}}\right)^{1 / 2} .
$$

Or

$$
T=\left(\frac{\varepsilon_{0} \pi^{3} m d^{3}}{2 Q q}\right)^{1 / 2}
$$

