281.

Problem 27.22 (RHK)

Two positive charges Q are held fixed a distance d apart. A particle of negative charge $-q$ and mass m is placed midway between them and then given a small displacement perpendicular to the line joining them and released. We have to show that the particle describes simple harmonic motion of period $\left(\varepsilon_{0} m \pi^{3} d^{3} / q Q\right)^{1 / 2}$.

Solution:

negative charge $-q$ and mass m is placed midway between them and given a small displacement perpendicular to the line joining them and is released. Let the displacement be y along the Y-axis. As the displacement is small we have the condition

$$
y=d .
$$

By symmetry the net Coulomb force on the charge $-q$ due to the charges Q will be in the direction $-\hat{y}$ and its magnitude will be

$$
\begin{aligned}
F(y) & =\frac{2 Q q}{4 \pi \varepsilon_{0}\left(\frac{d^{2}}{4}+y^{2}\right)} \times \frac{y}{\left(\frac{d^{2}}{4}+y^{2}\right)^{1 / 2}} \\
& =\frac{2 Q q y}{4 \pi \varepsilon_{0}\left(\frac{d^{2}}{4}+y^{2}\right)^{3 / 2}} .
\end{aligned}
$$

In the approximation $y=d$, we approximate F as

$$
F(y) ; \frac{8 Q q y}{2 \pi \varepsilon_{0} d^{3}} .
$$

Equation of motion of the charge $-q$ that has mass m will therefore be
$m \frac{d^{2} \stackrel{\Gamma}{y}}{d t^{2}}=-\frac{8 Q q y}{2 \pi \varepsilon_{0} d^{3}} \hat{y}$.
Scalar form of this equation is
$m \frac{d^{2} y}{d t^{2}}+\frac{8 Q q}{\left(2 \pi \varepsilon_{0}\right) d^{3}} y=0$.
It is an equation of simple harmonic motion form. The period of SHM of the motion is
$\frac{2 \pi}{T}=\left(\frac{8 Q q}{2 \pi \varepsilon_{0} m d^{3}}\right)^{1 / 2}$.
Or
$T=\left(\frac{\varepsilon_{0} m \pi^{3} d^{3}}{Q q}\right)^{1 / 2}$.

