277.

Problem 27.16 (RHK)

Two similar tiny balls of mass m are hung from silk threads of length L and carry equal charges q (as shown in the figure). We may assume that θ is so small that $\tan \theta$ can be replaced by its approximate equal, $\sin \theta$. (a) We have to show that in this approximation at equilibrium
where x is the separation bequee the balls. (b) If $L=122 \mathrm{~cm}, m=11.2 \mathrm{~g}$, and $x=4.70 \mathrm{~cm}$, we have to find the value of q.
(c) Assuming that both balls are conducting and one is discharged, we have to explain what will happen to the two conducting balls in this situation. We have to find the new equilibrium separation.

Solution:

Let us draw the free-body-diagram of the charge 1. It will be as shown in the figure below.
$i^{T} \quad$ Forces acting on charge 1 are
$F=\frac{q^{2}}{4 \pi g_{g} 2} \cdots \quad$ weight $m g$ acting vertically
repulsion $F=\frac{q^{2}}{4 \pi \varepsilon_{0} x^{2}}$ actighooriz antally as shown, and
the tension in the string T aeting at angle θ along the string. As the charge is in equilibrium, sums of the components of the forces in the vertical direction and of the components of the forces in the horizontal direction have to be zero. Therefore, we have the following two equations as each charge is in equilibrium.

$$
\begin{aligned}
& T \cos \theta=m g, \\
& T \sin \theta=\frac{q^{2}}{4 \pi \varepsilon_{0} x^{2}} .
\end{aligned}
$$

In the approximation $\tan \theta ; \sin \theta$, we therefore have the relation

$$
\sin \theta=\frac{q^{2}}{4 \pi \varepsilon_{0} x^{2} m g} .
$$

From the geometry of the problem, we note that

$$
\sin \theta=\frac{x}{2 L} .
$$

We thus have the relation

Or

Therefore,

$$
x=\left(\frac{q^{2} L}{2 \pi \varepsilon_{0} m g}\right)^{1 / 3} .
$$

(b)

We use the data
$L=122 \mathrm{~cm}=1.22 \mathrm{~m}, m=11.2 \times 10^{-3} \mathrm{~kg}$, and $x=4.70 \times 10^{-2} \mathrm{~m}$, for calculating the value of q.

We have the equation

$$
\begin{aligned}
q^{2}=\frac{x^{3}\left(4 \pi \varepsilon_{0}\right) m g}{2 L} & =\frac{\left(4.7 \times 10^{-2}\right)^{3} \times 11.2 \times 10^{-3} \times 9.81}{2 \times 1.22 \times 8.99 \times 10^{9}} \mathrm{C}^{2} \\
& =520 \times 10^{-18} \mathrm{C}^{2}
\end{aligned}
$$

And
$q=22.8 \times 10^{-9} \mathrm{C}$.

(c)

Now if one of the balls is discharged there will be no Coulomb force on each due to the other and because of the tension in the strings they will move toward each other like pendulums. When they come in contact with each other they will share chärge and the charge on each conducting sphere will beoonea $q^{\prime}=q / 2=11.4 \times 10^{-9} \mathrm{C}$. The new equilibrium separation can be found from the relation
$\frac{x^{\prime}}{x}=\left(\frac{q^{\prime}}{q}\right)^{2 / 3}$,
or
$x^{\prime}=4.70 \times\left(\frac{1}{2}\right)^{2 / 3} \mathrm{~cm}=2.96 \mathrm{~cm}$.

