275.

Problem 27.11 (RHK)

Two identical conducting spheres, having charges of opposite sign, attract each other with a force of 0.108 N when separated by 50.0 cm . The spheres are suddenly connected by a thin conducting wire, which is then removed, and thereafter spheres repel each other with a force of 0.0360 N . We have to find the initial charges on the spheres.

Solution:

Let the initial charges on the two conducting spheres be q_{1} and q_{2}, respectively. Each conducting sphere will attract the other with a force of magnitude $F_{i}=\frac{1}{4 \pi \varepsilon_{0}} \times \frac{q_{1}\left|q_{2}\right|}{0.5^{2}} \mathrm{~N}$.

It is given that $F_{i}=0.108 \mathrm{~N}$.
$\therefore \frac{1}{4 \pi \varepsilon_{0}} \times \frac{q_{1}\left|q_{2}\right|}{0.5^{2}}=0.108$,
and
$q_{1}\left|q_{2}\right|=\frac{0.108 \times 0.5^{2}}{8.99 \times 10^{9}} \mathrm{C}^{2}=3.0 \times 10^{-12} \mathrm{C}^{2}$.
Let $q_{1}>\left|q_{2}\right|$.
When the conducting spheres are connected by a thin conducting wire, charge will flow from one to the other till the charge on each conducting sphere becomes
$\left(q_{1}-\left|q_{2}\right|\right) / 2$.
It is given that when the conducting wire is removed, the two conducting spheres repel each other with a force $F_{f}=0.0360 \mathrm{~N}$.

From the Coulomb's law, we have the equation
$\frac{1}{4 \pi \varepsilon_{0}} \times \frac{\left(q_{1}-\left|q_{2}\right|\right)^{2}}{4 \times 0.5^{2}}=0.0360$,
or
$\left(q_{1}-\left|q_{2}\right|\right)^{2}=\frac{3.6 \times 10^{-2} \times 4 \times 0.5^{2}}{8.99 \times 10^{9}} \mathrm{C}^{2}=4.0 \times 10^{-12} \mathrm{C}^{2}$.
We find
$q_{1}-\left|q_{2}\right|=2.0 \times 10^{-6} \mathrm{C}$.
We have also found that
$q_{1}\left|q_{2}\right|=3.0 \times 10^{-12} \mathrm{C}^{2}$.
Using the identity
$\left(q_{1}+\left|q_{2}\right|\right)^{2}=\left(q_{1}-\left|q_{2}\right|\right)^{2}+4 q_{1}\left|q_{2}\right|$,
We get
$\left(q_{1}+\left|q_{2}\right|\right)^{2}=\left(4.0 \times 10^{-12}+12 \times 10^{-12}\right) \mathrm{C}^{2}$,
and
$q_{1}+\left|q_{2}\right|=4.0 \times 10^{-6} \mathrm{C}$.
From the above results, we get
$q_{1}=3.0 \mu \mathrm{C}$, and $q_{2}=-1.0 \mu \mathrm{C}$.

