274.

Problem 27.9 (RHK)

Two positive charges, each $4.18 \mu \mathrm{C}$, and a negative charge, $-6.36 \mu \mathrm{C}$, are fixed at the vertices of an equilateral triangle of side 13.0 cm . We have to find the electrical force on the negative charge.

Solution:

Because of the symmetry the vector sum of the y components of the forces on the charge, $-6.36 \mu \mathrm{C}$, due to charges $4.18 \mu \mathrm{C}$ will cancel and the net force on it will be the sum of the x-components. The force on the negative charge, therefore, will be along the x -axis and its magnitude will be

$$
F=\frac{2}{4 \pi \varepsilon_{0}}\left(\frac{4.18 \times 6.36 \times 10^{-12}}{\left(13.0 \times 10^{-2}\right)^{2}}\right) \times \cos 30^{0} \mathrm{~N} .
$$

Or

$$
F=2 \times 8.99 \times 10^{9} \times\left(\frac{4.18 \times 6.36 \times 10^{-12}}{\left(13.0 \times 10^{-2}\right)^{2}}\right) \times \frac{\sqrt{3}}{2} \mathrm{~N}
$$

$$
=24.49 \mathrm{~N}
$$

