273.

Problem 27.7 (RHK)

Three charged particles lie on a straight line and are separated by a distance d as shown in the Figure. Charges q_{1} and q_{2} are held fixed. Charge q_{3}, which is free to move, is found to be in equilibrium under the action of electric forces. We have to find q_{1} in terms of q_{2}.

Solution:

Applying Coulomb's law we note that the force on charge q_{3} due to charges q_{1} and q_{2} will be

$$
F=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{q_{1} q_{3}}{4 d^{2}}+\frac{q_{2} q_{3}}{d^{2}}\right) .
$$

Direction of forces on q_{3} due to q_{1} and q_{2} as are being determined by the product of their signs, we therefore have not shown them by affixing vector signs. As the
charge q_{3} is in equilibrium, the net force on it has to be zero.

Therefore,
$\frac{q_{1} q_{3}}{4 d^{2}}+\frac{q_{2} q_{3}}{d^{2}}=0$.
This equation gives
$q_{1}=-4 q_{2}$.

