271.

Problem 22.5 E (HRW)

Two equally charged particles, held $3.2 \times 10^{-3} \mathrm{~m}$ apart, are released from rest. The initial acceleration of the first particle is observed to be $7.0 \mathrm{~m} \mathrm{~s}^{-2}$ and that of the second to be $9.0 \mathrm{~m} \mathrm{~s}^{-2}$. The mass of the first particle is $6.3 \times 10^{-7} \mathrm{~kg}$. We have to find (a) the mass of the second particle and (b) the magnitude of the charge of each particle.

Solution:

Let the charge on each particle be q C. Separation between the two charged particles is $3.2 \times 10^{-3} \mathrm{~m}$.
According to Coulomb's law the force on each charged particle due to the other will be

$$
F=\frac{1}{4 \pi \varepsilon_{0}} \times \frac{q^{2}}{\left(3.2 \times 10^{-3}\right)^{2}} \mathrm{~N} .
$$

We recall
$\frac{1}{4 \pi \varepsilon_{0}}=8.99 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-2}$,
and
$\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$.
Therefore,
$F=\frac{8.99 \times 10^{9} \times q^{2}}{(3.2)^{2} \times 10^{-6}} \mathrm{~N}=0.8779 \times 10^{15} q^{2} \mathrm{~N}$.
The initial acceleration of the first particle is
$7.0 \mathrm{~m} \mathrm{~s}^{-2}$ and its mass is $6.3 \times 10^{-7} \mathrm{~kg}$. From Newton's second law

or
$q=\left(\frac{7.0 \times 6.3 \times 10^{-7}}{0.8779 \times 10^{15}}\right)^{1 / 2} \mathrm{C}=7.08 \times 10^{-11} \mathrm{C}$.
(b)

The initial acceleration of the second particle is $9.0 \mathrm{~m} \mathrm{~s}^{-2}$. Its mass m_{2} can be found by applying the

Newton's third law of motion
$m_{2} a_{2}=m_{1} a_{1}=6.3 \times 10^{-7} \times 7.0 \mathrm{~N}$.
$\therefore \mathrm{m}_{2}=\frac{6.3 \times 10^{-7} \times 7.0}{9.0} \mathrm{~kg}=4.9 \times 10^{-7} \mathrm{~kg}$.

