75 (b).

Problem 17.29 (RHK)

A fluid is rotating at constant angular velocity ω about the central vertical axis of a cylindrical container. (a) We have to show that the variation of pressure in the radial direction is given by

$$
\frac{d p}{d r}=\rho \omega^{2} r
$$

(b) By taking $p=p_{c}$ at the axis of rotation $(r=0)$ we have to show that the pressure p at any point r is

$$
p=p_{c}+\frac{1}{2} \rho \omega^{2} r^{2}
$$

(c) We have to show that the liquid surface is of paraboloidal form; that is a vertical cross-section of the surface is the curve $y=\omega^{2} r^{2} / 2 g$.
(d) We have to show that the variation of pressure with depth is $p=\rho g h$.

Solution:

The problem is about the famous Newton's rotating bucket experiment.
(a)

Consider a fluid mass rotating at constant angular speed ω about the central vertical axis of a cylindrical container. Liquid surface takes the shape as shown in the diagram. What has been shown in the diagram is a vertical cross-section of the rotating fluid. The surface of the fluid is curved. In fact, it is paraboloidal.

We fix the co-ordinate system by measuring vertical distance from the lowest point in the surface of the rotating fluid; it is by symmetry on the central axis.
Fluid below the level $y=0$ is rotating uniformly with angular speed ω.

We will analyse the dynamics of rotation of the fluid. At a distance r from the central axis we consider a fluid element of cross-section ΔA and width δr. Let ρ be the density of the fluid. The mass of this fluid element will be $\rho \Delta A \delta r$. As this fluid element is rotating with angular speed ω at a distance r from the rotation axis, it must obtain a centripetal force of magnitude $\rho \Delta A \delta r \omega^{2} r$. As the only source of force in the horizontal direction can be fluid pressure, it implies that in a rotating fluid pressure will vary with depth h and radial distance r. That is the pressure is a function $p(h, r)$. We will set up the equation of motion of the fluid element and from it obtain a differential equation for $p(h, r)$. We fill first obtain the variation of p as a function of r. As we are considering the rotation of a fluid element at depth h, in the following we will suppress the dependence of p on h.

Centripetal force is provided by the pressure difference at the two opposite faces of the fluid element.

$$
p(r+\delta r) \Delta A-p(r) \Delta A=\rho \Delta A \delta r \omega^{2} r
$$

As $p(r+\delta r)=p(r)+\frac{d p}{d r} \delta r$, by retaining terms of order in δr, we get

$$
\frac{d p}{d r}=\rho \omega^{2} r
$$

(b)

It is a linear first order differential equation. Its general solution is
$p(h, r)=p(h, 0)+\frac{1}{2} \rho \omega^{2} r^{2}$.
Calling $p(h, 0)=p_{c}$,
We get,
$p(h, r)=p_{c}+\frac{1}{2} \rho \omega^{2} r^{2}$.

On the central axis fluid is at rest as it does not rotate, variation of pressure on the axis with depth is the hydrostatic relation
$p(h, 0)=p_{0}+\rho g h$,
where p_{0} is the atmospheric pressure.
(c)

We now will find out how the radial pressure $\frac{1}{2} \rho \omega^{2} r^{2}$ arises.
Radial pressure is due to the curved shape of the liquid surface. Let the height of the liquid surface at radial distance as measured from the level $y=0$ be y. Then

$$
\begin{aligned}
& \rho g y=\frac{1}{2} \rho \omega^{2} r^{2}, \\
& \text { or } \\
& y=\frac{\omega^{2} r^{2}}{2 g} .
\end{aligned}
$$

It is the equation of a parabola. This curve on rotation about the central axis will trace a paraboloid.

