70 (a).

Problem 15.27E (HRW)

To suck lemonade of density $1000 \mathrm{~kg} / \mathrm{m}^{-3}$ up a straw to a maximum height of 4 cm , what minimum gauge pressure must be produced in the lungs?

Solution:

Pressure in the lung plus the pressure due to 4 cm column of lemonade of density $1000 \mathrm{~kg} / \mathrm{m}^{-3}$ has to be equal to the atmospheric pressure in order that we may be able to suck lemonade using a straw to a maximum height of 4 cm . This condition gives the algebraic relation

$$
P_{\text {lung }}+4.0 \times 10^{-2} \times 10^{3} \times 9.80=P_{\text {atm }} .
$$

Solving this equation, we find

$$
\begin{aligned}
P_{\text {lung }}-P_{\text {atm }} & =-3.9 \times 10^{-1} \times 10^{3} \mathrm{~Pa} \\
& =\frac{-3.9 \times 10^{-1} \times 10^{3} \mathrm{~Pa}}{1.01 \times 10^{5} \mathrm{~Pa} / P_{\text {atm }}} \\
& =-3.9 \times 10^{-3} P_{\text {atm }} .
\end{aligned}
$$

