**188.** 

## **Problem 3.30 (R)**

The nucleus  $C^{12}$  consists of six protons  $(H^1)$  and six neutrons (n) held in close association by strong nuclear forces. The rest masses are

 $C^{12}$ 12.000000 amu, $H^1$ 1.007825 amu,n1.008665 amu.

We have to calculate the energy required to separate a  $C^{12}$  nucleus into its constituent protons and neutrons. This energy is called the binding energy of the  $C^{12}$  nucleus. (The masses are really those of the neutral atoms, but the extra-nuclear electrons have relatively negligible binding energy and are of equal number before and after the break up of  $C^{12}$ .)

## **Solution:**

We note that 1 amu = 931 MeV  $c^{-2}$ .

Total mass of six  $H^1$  atoms and six neutrons is

 $6 \times (1.007825 + 1.008665)$  amu = 12.09894 amu.

Therefore, energy equivalent of mass of 0.09894 amu is required for breaking up of a  $C^{12}$  nucleus into six protons and six neutrons. Its energy equivalent is 92.11 MeV.

