186.

Problem 3.24 (R)

The "effective mass" of a photon (bundle of electromagnetic radiation of zero rest mass and energy hv) can be determined from the relation $m = E/c^2$. We have to compute the "effective mass" for a photon of wavelength 5000 A⁰(visible region) and for a photon of wavelength 1.0 A⁰(X-ray region).

Solution:

Planck constant, $h = 6.63 \times 10^{-34}$ J s. 1.0 A⁰ = 1.0×10⁻¹⁰ m.

Effective mass of a photon of wavelength λ will be $\frac{h}{\lambda c}$.

Therefore, effective mass of a photon of wavelength

5000 A⁰ will be
$$\frac{6.63 \times 10^{-34}}{3 \times 10^8 \times 5000 \times 10^{-10}}$$
 kg=4.42×10⁻³⁶ kg.

And, the effective mass of a photon of wavelength

1.0 A⁰ will be
$$\frac{6.63 \times 10^{-34}}{3 \times 10^{8} \times 10^{-10}}$$
 kg = 2.21×10⁻³² kg.