184.

Problem 2.50(R)

We have to find the wavelength shift, if any, in the Doppler effect for the sodium D_{2} line ($5890 \mathrm{~A}^{0}$) emitted from a source moving in a circle with constant speed 0.1 c measured by an observer fixed at the centre of the circle.

Solution:

As the source is moving in a circle with respect to an observer at the centre of the circle the line of sight is at 90° to the relative motion. In this case there will be transverse Doppler effect. If a source moving with velocity v transverse to the direction of observation emits waves of frequency v_{0} the observed frequency will be

$$
v=v_{0} \sqrt{1-v^{2} / c^{2}},
$$

or

$$
\lambda=\frac{\lambda_{0}}{\sqrt{1-v^{2} / c^{2}}} .
$$

In our problem $v=0.1 c$ and $\lambda_{0}=5890 \mathrm{~A}^{0}$. The wavelength of the sodium D_{2} line observed at the centre of the circle will be

$$
\lambda=\frac{5890}{\sqrt{1-0.01}} \mathrm{~A}^{0}=5919.6 \mathrm{~A}^{\circ} .
$$

Therefore, shift in the wavelength will be $29.7 \mathrm{~A}^{0}$.

