177.

Problem 2.28 (R)

A π^{+}meson is created in a high-energy collision of a primary cosmic-ray particle in the earth's atmosphere 200 km above sea level. It descends vertically at a speed of 0.99 c and disintegrates, in its proper frame $2.5 \times 10^{-8} \mathrm{~s}$ after its creation. We have to find the altitude above the seal level observed from earth when it disintegrates.

Solution:

In its rest frame the life of π^{+}meson is $2.5 \times 10^{-8} \mathrm{~s}$. Its speed as observed from earth is $0.99 c$. Its life as observed from earth will be

$$
t=\frac{2.5 \times 10^{-8}}{\sqrt{1-0.99^{2}}} \mathrm{~s}=1.77 \times 10^{-7} \mathrm{~s}
$$

Distance travelled by the π^{+}meson as observed from earth from the instant it is created to its disintegration will be

$$
l=v t=0.99 \times\left(3 \times 10^{8}\right) \times 17.7 \times 10^{8} \mathrm{~m}=52.6 \mathrm{~m}
$$

As the π^{+}meson was produced at $200,000 \mathrm{~m}$ above the sea level, the altitude at which it disintegrates as observed from earth will be

$$
(200,000-52.6) \mathrm{m}=199,947 \mathrm{~m}
$$

