174.

Problem 21.54 (RHK)

(a) Suppose we have a particle accelerated from rest by the action of a force F. Assuming that Newton's second law for a particle, $F=\frac{d p}{d t}$, is valid in relativity. We have to show that the final kinetic energy K can be written, using the work-energy theorem, as $K=\int_{0}^{v} v d p$. (b) By substituting the expression for relativistic momentum and carrying out the integration, we have to show that

$$
K=\frac{m c^{2}}{\sqrt{1-v^{2} / c^{2}}}-m c^{2}
$$

Solution:

(a)

For simplicity we will consider one dimensional motion. According to Newton's second law

$$
F=\frac{d p}{d t}
$$

where p is the momentum of the particle at time t. When the particle moves by distance $d x$ in the time interval $d t$, then according to the work-energy theorem the change in the kinetic energy of the particle will be

$$
\begin{aligned}
& d K=F d x=\frac{d p}{d t} d x=\frac{d p}{d t} v d t=v d p \\
& \text { or } \\
& K=\int_{0}^{v} v d p
\end{aligned}
$$

(b)

Relativistic momentum of a particle of mass m and velocity v is given by

$$
p=\frac{m v}{\sqrt{1-v^{2} / c^{2}}}
$$

Therefore,

$$
d p=\frac{m d v}{\left(1-\frac{v^{2}}{c^{2}}\right)^{3 / 2}}
$$

We, therefore, have

$$
K=\int_{0}^{v} \frac{m v d v}{\left(1-\frac{v^{2}}{c^{2}}\right)^{3 / 2}}
$$

Let us make the substitution in the integration variable

$$
1-\frac{v^{2}}{c^{2}}=\xi
$$

This gives

$$
-\frac{2 v d v}{c^{2}}=d \xi
$$

And, we have

$$
K=-\frac{m c^{2}}{2} \int_{0}^{1-\frac{v^{2}}{c^{2}}} \frac{d \xi}{\xi^{3 / 2}}=m c^{2}\left[\frac{1}{\sqrt{1-v^{2} / c^{2}}}-1\right]
$$

The energy of a particle of mass m moving with speed v will therefore be

$$
E=K+m c^{2}=\frac{m c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

