170.

Problem 21.35 (RHK)

Observers S and S^{\prime} stand at the origin of their respective frames, which are moving relative to each other with a speed 0.600 c. Each has a standard clock, which, as usual they set to zero when the two origins coincide. Observer S keeps the S^{\prime} clock visually in sight. We have to find (a) the time the S^{\prime} clock will record when the S clock records $5.0 \mu \mathrm{~s}$. (b) We have the find the time that observer S will actually read on the S^{\prime} clock when the S clock reads $5.0 \mu \mathrm{~s}$

Solution:

(a)

We will use the Lorentz transformations connecting the space-time co-ordinates of the same event observed by the observers in the frame S and that in the frame S^{\prime}.

$$
\begin{aligned}
& x^{\prime}=\frac{x-v t}{\sqrt{1-v^{2} / c^{2}}} \\
& t^{\prime}=\frac{t-x v / c^{2}}{\sqrt{1-v^{2} / c^{2}}}
\end{aligned}
$$

When the clock of S shows $5.0 \mu \mathrm{~s}$ the co-ordinates of the origin of S^{\prime} as measured by S will be

$$
\begin{aligned}
& x=5.0 \times 10^{-6} v \mathrm{~m} . \\
& \text { and }
\end{aligned}
$$

$$
t=5.0 \times 10^{-6} \mathrm{~s} .
$$

The speed of the frame S^{\prime}, with respect to S is $v=0.6 c$. The time t^{\prime} shown on the clock of S^{\prime} for this event will be

$$
\begin{aligned}
& t^{\prime}=\frac{t-x v / c^{2}}{\sqrt{1-v^{2} / c^{2}}}=\frac{5.0 \times 10^{-6}-5.0 \times 10^{-6} v^{2} / c^{2}}{\sqrt{1-v^{2} / c^{2}}} \mathrm{~s} \\
&=5.0 \times 10^{-6} \times \sqrt{1-0.6^{2}} \mathrm{~s}=4.0 \mu \mathrm{~s} .
\end{aligned}
$$

(b)

At the instant when the S -clock reads 5.0μ s the signal communicating the reading on the clock of S^{\prime} would have left it when it was at a distance l from S such that

$$
\begin{aligned}
& l=\left(5.0 \times 10^{-6}-l / c\right) \times v, \\
& \text { as } v=0.6 c, \\
& l=\frac{5.0 \times 10^{-6} \times 0.6 c}{1+0.6}=\frac{3.0 \times 10^{-6} c}{1.6} .
\end{aligned}
$$

The co-ordinates of this event in the S frame are

$$
\begin{aligned}
& x=\frac{3.0 \times 10^{-6} c}{1.6}, \\
& t=(5.0-3.0 / 1.6) \times 10^{-6} \mathrm{~s} .
\end{aligned}
$$

By Lorentz transformation we will calculate t^{\prime} for this event. It is

$$
\begin{aligned}
t^{\prime} & =\frac{(5.0-3.0 / 1.6)-3.0 \times 0.6 / 1.6}{0.8} \times 10^{-6} \mathrm{~s}, \\
& =2.5 \mu \mathrm{~s} .
\end{aligned}
$$

The observer on S will read 2.5μ s on the clock of S^{\prime} when its clock shows $5.0 \mu \mathrm{~s}$.

