166.

Problem 21.17 (RHK)

An experimenter arranges to trigger two flashbulbs simultaneously, a blue flash located at the origin of his reference frame and a red flash at $x=30.4 \mathrm{~km}$. A second observer, moving at a speed of 0.247 c in the direction of increasing x also observes the flashes. (a) We have to find the time difference between the flashes measured by the moving observer; (b) we have to answer which flash is observed first.

Solution:

(a)

In the frame of reference of the experimenter the spacetime co-ordinates of the two synchronous events are:
blue flash, $x=0, t=0$;
red flash, $x=30.4 \times 10^{3} \mathrm{~m}, t=0$.
A second observer moving with speed $v=0.247 c$ in the direction of increasing x observes these events. The space-time co-ordinates of the events as observed by the
moving observer will be related to those of the experimenter by the Lorentz transformation:

$$
t^{\prime}=\frac{t-x v / c^{2}}{\sqrt{1-v^{2} / c^{2}}}
$$

Using the Lorentz transformation the times of the two events measured by the moving observer will be:
blue flash, $t_{\text {blue }}{ }^{\prime}=0 \mathrm{~s}$,
red flash,

$$
\begin{aligned}
t_{\text {red }}^{\prime} & =\frac{-30.4 \times 10^{3} \times 0.247 / 3 \times 10^{8}}{\sqrt{1-0.247^{2}}} \mathrm{~s}, \\
& =-2.58 \times 10^{-5} \mathrm{~s}=-25.8 \mu \mathrm{~s} .
\end{aligned}
$$

The time interval between the two simultaneous flashes in the experimenter's frame as observed by the moving observer will be 25.8μ s .
(b)

And, according to the moving observer the red flash occurs earlier than the blue flash and will be Doppler shifted.

