162.

Problem 20.71 (RHK)

A police car sounding its siren is moving at $27 \mathrm{~m} \mathrm{~s}^{-1}$ and approaching a stationary pedestrian. The police in the car hear the siren at 12.6 kHz but the pedestrian hears the siren at 13.7 kHz . We have to find the air temperature. (We can assume that the speed of sound increases linearly with temperature between 0^{0} and $20^{\circ} \mathrm{C}$). $\left(v_{s}\left(T=0^{0} \mathrm{C}\right)=331 \mathrm{~m} \mathrm{~s}^{-1}\right.$ and $\left.v_{s}\left(T=20^{0} \mathrm{C}\right)=343 \mathrm{~m} \mathrm{~s}^{-1}\right)$

Solution:

From the data we will calculate the speed of sound in air and from the speed we will find the temperature of air.

Speed of the police car, $v_{\text {police }}=27 \mathrm{~m} \mathrm{~s}^{-1}$.
Frequency of the police siren, $f=12.6 \times 10^{3} \mathrm{~Hz}$.
Frequency of the siren as heard by the stationary pedestrian, $f_{\text {ped }}=13.7 \times 10^{3} \mathrm{~Hz}$.

Let the speed of sound be v_{s}.

Relation between the frequencies is given by the Doppler shift relation

$$
f_{\text {ped }}=f \frac{v_{s}}{v_{s}-v_{\text {police }}}
$$

or

$$
13.7 \times 10^{3}=12.6 \times 10^{3} \frac{v_{s}}{v_{s}-27 \mathrm{~m} \mathrm{~s}^{-1}} .
$$

From this equation, we get

$$
v_{s}=336.27 \mathrm{~m} \mathrm{~s}^{-1} .
$$

We will next calculate the coefficient of linear variation of speed of sound with temperature, α. We will use the data
$v_{s}\left(T=0^{0} \mathrm{C}\right)=331 \mathrm{~m} \mathrm{~s}^{-1}$
and

$$
v_{s}\left(T=20^{0} \mathrm{C}\right)=343 \mathrm{~m} \mathrm{~s}^{-1} .
$$

Let us assume linear variation of v_{s} with temperature.

$$
\begin{aligned}
& v_{s}(T)=v_{s}\left(0^{0}\right)+\alpha T, \\
& \text { and } \\
& 343=331+\alpha \times 20 .
\end{aligned}
$$

This gives

$$
\alpha=\frac{12}{20} \mathrm{~m} \mathrm{~s}^{-1} \operatorname{per}^{0} \mathrm{C}
$$

Speed of sound of $336 \mathrm{~m} \mathrm{~s}^{-1}$ will be at the air temperature T,

$$
T=\frac{5.27 \times 20}{12}=8.78^{\circ} \mathrm{C}
$$

